VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
AuthorsYin Zhou, Oncel Tuzel
AuthorsYin Zhou, Oncel Tuzel
Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To interface a highly sparse LiDAR point cloud with a region proposal network (RPN), most existing efforts have focused on hand-crafted feature representations, for example, a bird’s eye view projection. In this work, we remove the need of manual feature engineering for 3D point clouds and propose VoxelNet, a generic 3D detection network that unifies feature extraction and bounding box prediction into a single stage, end-to-end trainable deep network. Specifically, VoxelNet divides a point cloud into equally spaced 3D voxels and transforms a group of points within each voxel into a unified feature representation through the newly introduced voxel feature encoding (VFE) layer. In this way, the point cloud is encoded as a descriptive volumetric representation, which is then connected to a RPN to generate detections. Experiments on the KITTI car detection benchmark show that VoxelNet outperforms the state-of-the-art LiDAR based 3D detection methods by a large margin. Furthermore, our network learns an effective discriminative representation of objects with various geometries, leading to encouraging results in 3D detection of pedestrians and cyclists, based on only LiDAR.
3D Scene understanding has been an active area of machine learning (ML) research for more than a decade. More recently the release of LiDAR sensor functionality in Apple iPhone and iPad has begun a new era in scene understanding for the computer vision and developer communities. Fundamental research in scene understanding combined with the advances in ML can now impact everyday experiences. A variety of methods are addressing different parts of the challenge, like depth estimation, 3D reconstruction, instance segmentation, object detection, and more. Among these problems, creating a 3D floor plan is becoming key for many applications in augmented reality, robotics, e-commerce, games, and real estate.
October 8, 2021research area Computer Vision, research area Methods and Algorithmsconference ICCV