View publication

Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency.

† University of California, San Diego
‡ Carnegie Mellon University

Related readings and updates.

Humanoid robots have significant gaps in their sensing and perception, making it hard to perform motion planning in dense environments. To address this, we introduce ARMOR, a novel egocentric perception system that integrates both hardware and software, specifically incorporating wearable-like depth sensors for humanoid robots. Our distributed perception approach enhances the robot’s spatial awareness, and facilitates more agile motion planning…
Read more
Teleoperation for robot imitation learning is bottlenecked by hardware availability. Can high-quality robot data be collected without a physical robot? We present a system for augmenting Apple Vision Pro with real-time virtual robot feedback. By providing users with an intuitive understanding of how their actions translate to robot motions, we enable the collection of natural barehanded human data that is compatible with the limitations of…
Read more